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This work investigates the influence of physical properties on heat transfer between solid

and fluid phases in a moving porous bed, in which the working fluid flows in the opposite

direction with respect to the permeable medium. A two-energy equation model is applied

in addition to a macroscopic mechanical model for laminar flow. Transport equations are

discretized using the control-volume method and the system of algebraic equations is

relaxed via the SIMPLE algorithm. The effects on inter-phase heat transfer due to vari-

ation of Reynolds number, solid-to-fluid velocity ratio, solid-to-fluid thermal capacity ratio,

permeability, porosity, and solid-to-fluid thermal conductivity ratio are analyzed. Results

for a counterflow moving bed indicate that motion of solid material, contrary to the direc-

tion of the fluid, enhances heat transfer between phases. The same effect was observed for

smaller Darcy numbers and porosity, as well as for higher solid-to-fluid thermal capacity

and thermal conductivity ratios.

INTRODUCTION

Exchange of thermal energy by means of counterflow heat transfer equipment
is often encountered in a number of engineering processes. Two streams separated by
a solid plate and flowing in opposite but aligned directions constitute the most com-
mon configuration of counterflow heat exchangers. Examples are certain types of
cooling towers, boilers, condensers, evaporators, and fluidized bed, among others
[1–3]. Configurations where both fluid streams are not aligned but rather perpen-
dicular to each other, are called ‘‘cross-flow’’ heat exchangers as opposed to the
counterflow arrangement investigated here [4].

Further study in the literature is the work by Ansari and Mortazavi [5], who
conducted simulation of dynamical response of a countercurrent heat exchanger
to inlet temperature or mass flow rate change. Kranc [6] presented a method to esti-
mate the performance of a counterflow cooling tower packed with a regular fill. Ay
et al. [7] presented a numerical model to calculate performance information about
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direct-contact heat transfer between a rising dispersed refrigerant and a counterflow
continuous fluid. Souid and Bontemps [8] studied countercurrent gas-liquid flow in
narrow rectangular channels simulated by plain and perforated fins. The main
advantage of counterflow over concurrent flow is that the outlet temperature of
the cold phase can be higher than the outlet temperature of the hot phase; whereas
in a concurrent flow configuration, this temperature reaches, at the most, the
equilibrium temperature of phases.

A moving porous bed fully saturated by a cold fluid, which moves in the
opposite direction of a hot permeable bed, can also be seen as a counterflow heat
exchanger and such a configuration can be found in a number of materials and
energy production systems. Rajan et al. [9] showed the effect of solid loading ratio
and particle size in a simulation of a countercurrent gas–solid heat exchanger.
Valipour et al. [10] described a model to predict flow in a cylindrical reactor in
which pellets of iron ore went through a gas mixture. Henda and Falcioni [11]
described the thermal performance of a pre-heater that consists of a moving bed
of pellets of nickel in concurrent flow with a gas, using both one and two equations
energy models.

Biomass gasification for energy production may also consider systems having a
moving porous bed. Examples are given by Ryu et al. [12], Boman et al. [13], and
Shimizu et al. [14], who presented mathematical models of the gasification of a sys-
tem using a moving bed in the burning of biomass. Kayal and Chakravarty [15],
Rogel et al. (2006) [16] and Nussbaumer et al. (2003) [17] investigated technologies
to cope with the problem of pollutant emission during of combustion and
co-combustion of biomass.

In an accompanying paper [18], concurrent or parallel flow in a moving porous
bed was investigated using a two-equation approach for handling thermal

NOMENCLATURE

cF Forchheimer coefficient

cp specific heat

D particle diameter

D deformation rate tensor,

D¼ [r uþ (r u)T]=2

H Distance between channel walls

K Permeability

L Channel length

p Thermodynamic pressure

hpii Intrinsic (fluid) average of pressure p

Re Reynolds number, ReH ¼ q uDin
2H m= ,

ReD¼qjureljD=m
hTfi Fluid temperature

hTsi Solid temperature

u Microscopic velocity vector

huii Intrinsic (fluid) average of u

uD Darcy velocity vector, uD¼/huii
uS Total-volume-based solid velocity

vector

uD x-component of uD
uS x-component of uS
urel Relative velocity based on total volume

Keff Effective thermal dispersion tensor

ks=kf Thermal conductivity ratio

Ai Interfacial area

ai Interfacial area per unit volume

hi Interfacial heat transfer coefficient

x, y Cartesian coordinates

Greek

m Fluid dynamic viscosity

q Density

u General variable

c Phase identifier

/ Porosity

Subscript

s,f s¼solid, f¼fluid

in, out in¼inlet, out¼outlet
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non-equilibrium [19] along with a model for treating the movement of the solid phase
[20]. Therein, only parallel flow cases were investigated, or say, the movement of the
solid porous matrix was always in the same direction of that of the working fluid.

The objective of the present contribution is to extend the parallel-flow analysis
of [18] to investigate now counterflow cases. Here, the solid material flows steadily in
opposite direction of that of the fluid. By that, a number of engineering flows
of practical relevance can be evaluated such as flow in biomass gasifiers and in
equipment for advanced materials production.

MACROSCOPIC MODEL FOR FLOW EQUATIONS

For a moving bed, only cases where the solid phase velocity is kept constant
will be considered, or say, we consider here a moving rigid bed that crosses a fixed
control volume in addition to a flowing fluid, which is not necessarily moving with
a velocity aligned with the solid phase velocity. Figure 1a identifies possible config-
urations for the relative movement between phases. In a parallel or concurrent
arrangement, as the positive ratio uS=uD increases, the relative velocity is reduced
and, consequently, relative friction between phases will decrease. On the other hand,

Figure 1. Porous bed reactor with a moving solid matrix. (a) Flow configurations, (b) counterflow

with fluid moving west to east, and (c) counterflow with fluid moving east to west (color figure available

online).
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for uS=uD< 0 as in counterflow cases, the increase in the relative velocity will impact
on the transport of momentum and heat between the fluid and the solid substrate.
The models below intend to reflect such reasoning.

Further, as the equations to follow are fully available in the open literature,
their derivation are not repeated here and, to the interested reader, reference [21]
is suggested for further modeling details. Also, before transport equations for the
moving bed cases are presented, the mathematical model for a standard fixed bed
is shown for the sake of completeness.

FIXED BED

A macroscopic form of the governing equations is obtained by taking the volu-
metric average of the entire equation set. In this development, the porous medium is
considered to be rigid, fixed, isotropic and saturated by the incompressible fluid.
Also, no buoyancy effects are considered here. For a discussion on buoyant flows
modeling in heterogeneous systems, see reference [22].

As mentioned, derivation of this equation set is already available in the litera-
ture [21], so details are not repeated here. Nevertheless, for the sake of completeness,
the final laminar incompressible form of the equations is presented.

Continuity

r � uD ¼ 0 ð1Þ
Momentum

q
quD
qt

þr � ðuDuD
/

Þ
� �

¼ �rð/h�ppiiÞ þ mr2uD � m/
K

uD þ cF/qjuDjuDffiffiffiffi
K

p
� �

ð2Þ

where the last two terms in Eq. (2) represent the Darcy and Forchheimer
contributions.

MOVING BED

The steps below show some basic definitions prior to presenting a proposal for
a set of transport equations for analyzing systems schematically, shown in Figure 1a.
Here, the moving medium is supposed to be isotropic.

A general form for a volume-average of any property u, distributed within a
phase c that occupy volume DVc, can be written as [23, 24]

uh ic¼ 1

DVc

Z
DVc

udVc ð3Þ

In the general case, the volume ratio occupied by phase c will be /c¼DVc=DV.
If there are two phases, a solid c¼ s and a fluid phase c¼ f, volume average can

be established in both regions. Also,

/s ¼ DVs=DV ¼ 1� DVf =DV ¼ 1� /f ð4Þ
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and for simplicity of notation one can drop the superscript f to get

/s ¼ 1� / ð5Þ

As such, calling the instantaneous local velocities for the solid and fluid phases,
us and u, respectively, one can obtain the average for the solid velocity, within the
solid phase, as follows,

huis ¼ 1

DVs

Z
DVs

us dVs ð6Þ

with, in turn, can be related to an average velocity referent to the entire REV as,

uS ¼ DVs

z}|{ð1�/Þ

DV
1

DVs

Z
DVs

us dVshuis

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h/is

ð7Þ

A further approximation herein is that the porous bed is kept rigid and moves
with a steady average velocity us.

Both velocities can then be written as,

uD ¼ /huii and us ¼ ð1� /Þhuis ¼ const ð8Þ

A relative velocity is then defined as,

urel ¼ uD � uS ð9Þ

Assuming that the relative movement between the two phases is macroscopi-
cally described by Eq. (9), the momentum equation reads,

q
quD
qt

þr � ðuDuD
/

Þ
� �

¼ �rð/h�ppiiÞ þ mr2uD � m/
K

urel þ
cF/qjurel jurelffiffiffiffi

K
p

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

relative drag

; ð10Þ

TWO-ENERGY EQUATION MODEL

As for the flow, the macroscopic equations to heat transport in porous media are
obtained by applying the average volume to microscopic equations. The mathematical
model used to describe the heat transfer between the solid and fluid in a unit of a mov-
ing bed is based on the two-energy equations model, which can be written as follows.

q cp
� �

f
/

n o qhTf ii

q t
þ q cp

� �
f
r � uDhTf ii

� �
¼ r � Keff ; f � rhTf ii

n o
þ hiai hTsii � hTf ii

� � ð11Þ
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1� /ð Þ q cp
� �

s

n o qhTsii

q t
þ q cp

� �
s
r � uShTsii

� �
¼ r � Keff ; s � rhTsii

n o
� hiai hTsii � hTf ii

� � ð12Þ

where Keff,f and Keff,s are the effective conductivity tensors for fluid and solid, respect-
ively, given by

Keff ; f ¼ ½/ kf � I þ Kf ; s þ Kdisp ð13Þ

Keff ; s ¼ ½ð1� /Þ ks� I þ Ks;f ð14Þ

where I is the unit tensor and Kdisp, Kf, s, and Ks, f are tensors defined as

Thermal dispersion : �ðq cpÞf ð/ hiuiTf ii Þ ¼ Kdisp � rhTf ii ð15Þ

Local conduction :

r � 1
DV

R
Ai

ni kf Tf dA

" #
¼ Kf ; s � rhTsii

�r � 1
DV

R
Ai

ni ksTs dA

" #
¼ Ks;f � rhTf ii

8>>>><
>>>>:

ð16Þ

where ni in Eq. (16), as already noted, is the unit vector pointing outwards of the fluid
phase. In this work, for simplicity, one assumes that the overall thermal resistance
between the two phases is controlled by the interfacial film coefficient rather than
by the thermal resistance within each phase. As such, the local conduction coefficients
Kf,s, Ks,f are neglected here for the sake of simplicity. Additional information on the
models in Eqs. (13) and (14) can be found in reference [25].

INTERFACIAL HEAT TRANSFER COEFFICIENT

The heat transferred between the two phases was modeled by means of a film
coefficient hi, or interstitial heat transfer coefficient, present in Eq. (11) and Eq. (12),
such that,

hiai Tsh ii� Tf

	 
i� �
¼ 1

rV

Z
Ai

ni � kfrTf dA ¼ 1

DV

Z
Ai

ni � ksrTs dA ð17Þ

where Ai is the interfacial area between the two phases and ai is the interfacial area
per unit volume or ai¼Ai=rV. The high values of ai make them attractive for trans-
ferring thermal energy via conduction through the solid followed by convection to a
fluid stream.

Wakao et al. (1979) [26] obtained a heuristic correlation for a closely packed
bed of particle diameter D and compared their results with experimental data. This
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correlation for the interfacial heat transfer coefficient is given by,

hiD

kf
¼ 2þ 1:1Re0:6D Pr1=3; for / > 0:9 ð18Þ

Further, a numerical correlation for the interfacial convective heat transfer
coefficient was proposed by Kuwahara et al. (2001) [27] for a laminar flow as,

hiD

kf
¼ 1þ 4ð1� /Þ

/

� �
þ 1

2
ð1� /Þ1=2ReDPr1=3; valid for 0:2 < / < 0:9: ð19Þ

Results in Eq. (19) depend on the porosity and are valid for packed beds of
particle diameter D. In addition, Saito and de Lemos (2005) [28] also obtained the
interfacial heat transfer coefficient for laminar flows though an infinite square rod
array using the same methodology as Kuwahara et al. (2001) [27]. It is interesting
to note that the interstitial correlations (18) and (19) for hi do not take into consider-
ation the solid phase thermal conductivity. Accordingly, transport of heat by
conduction through the solid matrix is accounted for by the solid conductivity
tensor, equation (14), which yields the conduction transport term in (12). Further,
both correlations (18) and (19) have been used in a number of works for analyzing
the transfer of energy between the solid matrix and the working fluid in saturated
porous media [27, 28].

The interstitial heat transfer coefficient hi is calculated by correlations Eq. (19)
for laminar flow. However, since the relative movement between phases is seen as the
promoter of convective heat transport from the fluid to the solid, or vice-versa, a
relative Reynolds number defined as

ReD ¼ q urelj jD
m

ð20Þ

is used in correlation Eq. (19) instead of a Reynolds number based on the absolute
velocity of the fluid phase. Accordingly, when the solid phase velocity approaches
the fluid velocity, the only mechanism for transferring heat between phases is
conduction.

NUMERICAL METHOD AND BOUNDARY CONDITIONS

The problem under investigation is laminar flow through a channel completely
filled with a moving porous medium. The two cases considered here are depicted
in Figure 1b and 1c, and the only difference between them is the reversal in the
x-direction of the boundary conditions applied for both velocities at their entrances.
The sole reason for considering two such possibilities was to guarantee computer
accuracy when comparing the solutions obtained with the two cases, which should
present a perfect mirror image with respect to each other.

The numerical method used to discretize the flow and energy equations was the
control volume approach. The SIMPLE method of Patankar [29] was used to handle
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the pressure-velocity coupling and was applied for relaxing the systems of algebraic
equations.

Figure 2 presents a typical control volume written in the generalized coordi-
nates system g–n. The discretized form of the two-dimensional conservation equa-
tion for a generic property u, in permanent regime, is given by

Ie þ Iw þ In þ Is ¼ Su ð21Þ

where Ie, Iw, In, and Is represent, respectively, the fluxes of u in the faces east, west,
north, and south of the control volume and Su is its source term.

Standard source term linearization is accomplished by using

Su � S��
u huiip þ S�

u ð22Þ

Discretization of the momentum equation in the x-direction gives,

S�x ¼ S�x
e

� �
P
� S�x

w

� �
P
þ S�x

n

� �
P
� S�x

s

� �
P
þS�

P ð23Þ

S��x ¼ S��
u ð24Þ

where, S
�x is the diffusive part, here treated in an explicit form. The second term,

S
��x, entails the additional drag forces due to the porous matrix, which are here

treated explicitly.
Convergence was monitored in terms of the normalized residue, which was set

to be lower than 10�9.
Boundary conditions are given by:

On solid walls; huii ¼ 0; qw ¼ 0 ð25Þ

Figure 2. Control volume and notation.
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For the west and east faces, boundary conditions will depend on the direction
of fluid and feed stream as depicted in Figure 1, as follows:

Case of Figure 1b – counterflow with fluid moving west to east:
On the west face:

uD ¼ uinlet; hTf ii ¼ Tfin ð26Þ

Tsh ii ¼ Tsout � Tfin þ
q
qx qcp

� �
f
uinlet Tf

	 
i � /kf
q Tfh ii
qx

� �




x¼0

hiai
ð27Þ

On east face: us ¼ usin ; hTsii ¼ Tsin ð28Þ

Tf

	 
i ¼ Tfout � Tsin þ
q
qx qcp

� �
s
usin Tsh ii � 1� /ð Þks q Tsh ii

qx






x¼L

� �
hiai

ð29Þ

Boundary conditions (27) and (29) come from applying the corresponding
transport equations (11) and (12), in their steady-state form, at west and east faces,
respectively.

Case of Figure 1c – counterflow with fluid moving east to west:
On the west face

us ¼ usin ; hTsii ¼ Tsin ð30Þ

Tf

	 
i ¼ Tfout � Tsin þ
q
qx qcp

� �
s
usin Tsh ii � 1� /ð Þks q Tsh ii

qx

� �




x¼0

hiai
ð31Þ

On the east face

uD ¼ uinlet; hTf ii ¼ Tfin ð32Þ

Tsh ii ¼ Tsout � Tf in þ
q
qx qcp

� �
f
uinlet Tf

	 
i � /kf
q Tfh ii
qx

� �




x¼L

hiai
ð33Þ

It is interesting to note the practical application of the inlet boundary conditions.
Real world engineering flows in actual reactors will most likely present a temperature
distribution when the incoming flow, of either phase, is not well-insulated. However,
when the feed stream is thermally isolated and the working fluid is well mixed and
evenly distributed before entering the reactor, the use of constant temperature values
at inlet may well represent the basic features of flow and heat transfer in such equip-
ment. Examples of similar boundary conditions assuming constant values at inlet for
moving beds are found in reference [30].

MOVING BED WITH THERMAL NONEQUILIBRIUM CONDITION 9
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RESULTS AND DISCUSSION

As previously mentioned, Figure 1a shows two possibilities for the relative
movement of phases. Both phases can co-flow in the same direction, in a parallel
arrangement, or have opposite directions in the so-called counterflow configuration.
Here, only counterflow cases are investigated. For the sake of checking the computer
code accuracy, two equivalent cases are investigated. In the first case, the solid
matrix moves from east to west, whereas the fluid enters through the west side of
the porous reactor (Figure 1b). In an equivalent but reversed configuration, both
solid and fluid exchange their side of entrance (Figure 1c).

Further, the channel shown in Figure 1 has length and height given by L and
H, respectively. The porous matrix moves with constant velocity us in the opposite
direction of the fluid velocity uD (see Figure 1a). In the following figures, axial tem-
perature profiles for both phases are presented for the two cases in Figures 1b and 1c,
with the sole purpose to show that results will be consistent with application of
reserved boundary conditions.

The fluid and solid phases are given different temperatures at the inlet and
non-dimensional temperatures for the solid and fluid are defined as:

hs;f ¼
Ts;f

	 
i�Tmin

Tmax � Tmin
ð34Þ

where the subscripts s, f stands for the solid and fluid phases, respectively, and
‘‘max’’ and ‘‘min’’ refers to maximum and minimum temperatures of both phases.
Also, it is interesting to mention that correctness of the energy balance of both
phases was checked for every run to be presented, or say, heat leaving one phase
was properly absorbed by the other. Comparisons with experimental data, however,
are here not presented due to lack of experimental values in the literature, at least for
the specific configurations here analyzed. Results herein should then be regarded as
a first approximation subjected to refinement as more experimental data is made
available in the literature.

EFFECT OF REYNOLDS NUMBER, ReD

Figure 3 shows values for the longitudinal non-dimensional temperature pro-
files as a function of ReD. The Reynolds number was calculated based on the relative
velocity urel, as given by equation (20), and for a fixed value uS=uD¼� 0.5. Figure 3
indicates that the cold fluid is heated up as it permeates the hot porous structure,
which moves in the opposite direction of the fluid. It is observed that the higher
the relative Reynolds number, resulting from increasing the opposing mass flow rates
of both the fluid and the solid, with consequent increase on the relative velocity
between the phases, more energy is convected into the system increasing the tempera-
ture difference between the phases along the channel. Although an increase in ReD
reflects in an increase in hi, Eq. (19), resulting in a stronger interstitial heat exchange,
the imposed elevation of both mass flow rates in order to keep uS=uD¼�0.5 will
result in larger temperature differences for the same length of the reactor. The cor-
responding effect is seen in Figure 3b when both flows have their directions reversed.

10 A. C. PIVEM AND M. J. S. DE LEMOS

D
ow

nl
oa

de
d 

by
 [

M
ar

ce
lo

 d
e 

L
em

os
] 

at
 1

0:
43

 2
0 

Ja
nu

ar
y 

20
12

 



EFFECT OF SLIP RATIO, uS/uD

Figure 4 shows temperature profiles for a moving bed as a function of uS=uD.
In the plots shown in the figure, the fluid speed was kept constant in one direction
(ReH¼ 1139) and the solid speed, in the opposite direction, was varied leading to
the increase of absolute values of uS=uD. It is observed that for higher absolute values
of uS=uD, or higher relative velocities urel¼ uD� uS, the heating of the fluid is
more efficient, raising its temperature at the fluid exit. The figure indicates that by
increasing uS=uD, more thermal energy is brought into the system by the solid phase,

Figure 4. Nondimensional temperatures as a function of us=uD, ReH¼ 1139, ks=kf¼ 25, /¼ 0.9, and

(qcp)s=(qcp)f¼ 1.5. (a) flow moving west to east and (b) flow moving east to west (color figure available

online).

Figure 3. Nondimensional temperatures as a function of ReD for uS=uD¼�0.5, ks=kf¼ 25, Da¼
3.371� 10�3, /¼ 0.9, and (qcp)s=(qcp)f¼ 1.5. (a) Flow moving west to east and (b) flow moving east to

west (color figure available online).
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leading to an increase in the solid temperature at a certain axial position x=L. Due to
a greater ReD, which is based on urel, better interstitial heat transfer is obtained,
raising the fluid temperature at the same axial location. In all cases, it is observed
that the outlet temperature of the fluid is greater than the outlet temperature of
the solid.

EFFECT OF DARCY NUMBER, Da

Figure 5 shows the effect of the Darcy number Da¼K=H2 on the axial tem-
perature profiles. The decrease of the Darcy number is a consequence of decreasing
the medium permeability, which is here computed by K¼D2/2=144(1�/)2, D being
the associated particle diameter of the bed and / its porosity. A reduction in K
means an increase in flow resistance. For the simulations in the figure, the Reynolds
number and the porosity were kept constant for all curves. It is observed in Figure 5
that for a small permeability, or small Da¼K=H2 as a result of a decrease of particle
diameter while keeping the porosity constant, a larger interfacial heat transfer area
promotes energy transfer along the channel, resulting in a more efficient heat
exchange between phases. This can be observed for Da¼ 1.5� 10�3 and for
Da¼ 6� 10�3, where the outlet temperature of the fluid is greater than the outlet
temperature of the solid.

EFFECT OF POROSITY, /

Figure 6 shows the effect of porosity on the longitudinal temperature distri-
bution. The Reynolds number, the velocity ratio uS=uD, the Darcy number, and
the ratio of thermal capacity were kept constant for all curves. The figure indicates
that for low porosities, a better exchange of heat is obtained between phases. For a

Figure 5. Nondimensional temperatures as a function of Da, us=uD¼�0.5, ks=kf¼ 25, /¼ 0.9, ReD¼ 794,

and (qcp)s=(qcp)f¼ 1.5. (a) Flow moving west to east and (b) flow moving east to west (color figure

available online).
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fixed Reynolds number, a decrease in porosity corresponds to an increase on the
interfacial heat transfer coefficient hi Eq. (19). Consequently, the product hiai will
increase as porosity / decreases, enhancing the ability of the solid phase to heat
up the colder fluid. Moreover, the lower the porosity, i.e., the greater the amount
of solid material per total volume, the closer the fluid temperature will be to that of
the solid temperature along the channel, which is caused by a greater exchange of
heat between phases. This can be observed for /¼ 0.4 and for /¼ 0.6, where, in both

Figure 6. Nondimensional temperatures as a function of /, us=uD¼�0.5, (qcp)s=(qcp)f¼ 1.5, Da¼ 0.1498,

and ReD¼ 794. (a) Flow moving west to east and (b) flow moving east to west (color figure available

online).

Figure 7. Nondimensional temperatures as a function of (qcp)s=(qcp)f, us=uD¼�0.5, ks=kf¼ 25, /¼ 0.9,

Da¼ 1.498� 10�3, and ReD¼ 794. (a) Flow moving west to east and (b) flow moving east to west (color

figure available online).
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Figure 8. Nondimensional temperatures as a function of ks=kf, /¼ 0.6, Da¼ 4.162� 10�3, and

(qcp)s=(qcp)f¼ 1.5. (a) Flow moving west to east and (b) flow moving east to west (color figure available

online).
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cases, the outlet fluid temperature is greater than that of the solid temperature at
exit.

EFFECT OF THERMAL CAPACITY RATIO ðqcpÞs=ðqcpÞf
The effect of the thermal capacity ratio on dimensionless temperatures is

shown in Figure 7. The density and specific heat of the fluid are kept constant and
given by qf¼ 0.4345 kg=m3 and cpf ¼ 1986:8 J/kg K, respectively. It is observed in

the figure that when the heat capacity of the solid is greater than that of the
fluid, the solid temperature presents less variation in temperature across the reactor.
When the thermal capacity of the solid ðqcpÞs is high, more energy exchange is

needed to vary the temperature of the solid by a certain amount. Also, for all cases,
the outlet fluid temperature is greater than the value of the solid temperature at the
exit. For the highest ratio analyzed, ðqcpÞs=ðqcpÞf ¼ 10:0; the solid temperature

undergoes the least variation, as expected.

EFFECT OF THERMAL CONDUCTIVITY RATIO ks/kf

Finally, Figure 8 show the effect of ks=kf on longitudinal non-dimensional tem-
peratures for distinct velocity ratios uS=uD. For a fixed solid substrate, us=uD¼ 0
(Figure 8a,b), one note that the higher the ratio ks=kf, the stronger is the axial
conduction through the solid, raising its temperature and, consequently, heating
up the fluid at the outlet (see cases in Figure 1b and c for data in Figure 8b and a,
respectively).

With the slow movement of the solid bed, us=uD¼�0.1, Figure 8c and d show
that the solid temperature is raised not only by axial conduction along the bed, but
also due to increase of the fluid temperature due to a better exchange of heat between
phases, an effect caused by increase of the interfacial heat transfer coefficient hi,
which, in turn, is a result of increasing the relative velocity and, consequently,
ReD (see Eq. (19)). As a result, values of both the fluid and the solid temperatures
along the channel increase with increase of ks=kf. Compared to the previous case
for us=uD¼ 0, the effect of ks=kf now seems to be of a lesser importance since
inter-phase heat transport starts to play a role in temperature distributions as the
solid velocity increases. Such conclusion becomes more evident for us=uD¼�0.4
(Figure 8e,f), when the ratio of thermal conductivity causes little influence on the
temperature distribution within each phase along the channel. For high solid mass
flow rates, with absolute values of us=uD approaching 1, there is a better heat
exchange between the phases along the channel, regardless of the value of the ther-
mal conductivity of the solid.

CONCLUSIONS

This article investigated the behavior of a two-energy equation model to simu-
late flow and heat transfer in a counterflow porous moving bed. Numerical solutions
for laminar flow were obtained for distinct values of Reynolds number ReD, slip
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ratio uS=uD, Darcy number Da, porosity /, ratio of thermal capacity (qcp)s=(qcp)f,
and ratio of thermal conductivity ks=kf.

It is observed, according to the results obtained, that an exchange of heat
between phases is more efficient when compared with parallel flow cases. Movement
of the solid material contrary to the direction of the fluid, with higher ReD or slip
ratio uS=uD, enhances heat transfer between phases. The same effect was observed
for smaller Da, smaller /, and higher (qcp)s=(qcp)f and ks=kf.
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